

WJEC 2014 Online Exam Review

GCE Electronics ET1 1141-01

All Candidates' performance across questions

?	?	?	?	?	?	?	_
Question Title	N	Mean	S D	Max Mark	F F	Attempt %	
1	817	7.1	1.5	8	88.8	99.9	
2	812	4.4	2.1	6	73.1	99.3	
3	816	5.5	2.4	9	60.9	99.8	\leftarrow
4	816	2.9	2.3	7	41.8	99.8	\leftarrow
5	813	2.8	2	6	45.8	99.4	
6	810	3.2	1.5	5	64.9	99	
7	813	4.1	2.2	7	58	99.4	
8	803	6.4	3.7	12	53.3	98.2	\leftarrow

^	/-1	Simplify the following		and the second section is	the contract of the late.	and the same of the same and the same
3	(2)	Simplify the following	Avnraccione	SUUMINU I	INTERNATION	Where annronriate
J .	(4)		CADI COOIDI IO,	SHOWING V	your working	writers appropriate.

	_		
(i)	A.1 =	[1	١

(ii)
$$(B + \bar{A}).(\bar{B} + A) =$$

[2]

(b) A different logic system produced the Karnaugh map shown below.

BA DC	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	1	1	0	1
10	0	0	1	1

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.

[3]

[3]

$$Q = (\overline{\overline{A}.\overline{B}}).(\overline{A} + \overline{\overline{B}})$$

Apply DeMorgan's theorem to the following expression and simplify the result.

All steps of the simplification must be shown.

(i) $\bar{A}.1 = A$

[1]

(ii)
$$(B + \overline{A}).(\overline{B} + A) = B + \overline{A}.\overline{B} + A = 0$$

[2]

(b) A different logic system produced the Karnaugh map shown below.

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.

[3]

[3]

- (c) Apply DeMorgan's theorem to the following expression **and** simplify the result. All steps of the simplification must be shown.

$$(\overline{A}, \overline{B}) + (\overline{A} + \overline{B})$$

$$(\overline{A}+\overline{B})+(A.\overline{B})$$

$$\overline{A} + \overline{B} + A \cdot \overline{B} = \overline{B}$$

(i) $\bar{A}.1 = A$

[1]

(ii)
$$(B + \overline{A}).(\overline{B} + A) = B + \overline{A}.\overline{B} + A = 0$$

[2]

(b) A different logic system produced the Karnaugh map shown below.

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.

[3]

C. B+ C. B+ O. B. A

	$\overline{}$
2	ر

(c) Apply DeMorgan's theorem to the following expression **and** simplify the result. All steps of the simplification must be shown.

[3]

$$\overline{A+B+A\cdot B}$$

= 8

Linding	the following expression	,
	Λ.	

[1]

(ii)
$$(B + \bar{A}).(\bar{B} + A) = \bar{B}.\bar{A}$$

[2]

(b) A different logic system produced the Karnaugh map shown below.

DC BA	00	01	11	10
00	0	0	1	1)
01	1	1	0	0
11	1	1	0	1
10	0	0	1	1)
10	0	0	1	

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.

[3]

				-			 <u>~</u>	_	88 825	-
27200				\mathbf{O}	1	\mathcal{O}		- 1		12
(3)	7	C	۵	IJ	T	\mathcal{O} .			₩ C .	U
\mathcal{Q}				$\boldsymbol{\omega}$			 			• • • • •

200 S

(c) Apply DeMorgan's theorem to the following expression **and** simplify the result. All steps of the simplification must be shown.

[3

$$Q = (\overline{A}.\overline{B}).(A + \overline{B})$$

$$Q = (\overline{A}.\overline{B}).(A + \overline{B})$$

Q = (A(B).(A(B))

The second of th	
3. (a) Simplify the following expressions showing your working where app	opriate.

	_		7 3/
(i)	A.1	=	AV

[1]

[2]

Examiner only

(ii)
$$(B + \overline{A}).(\overline{B} + A) = \overline{B}.\overline{A}$$

A different logic system produced the Karnaugh map shown below. (b)

DC BA	00	01	11	10
00	0	0	1	1)
01	(1	1	0	0
11	1	1)	0	1
10	0	0	1	D

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.

[3]

Apply DeMorgan's theorem to the following expression and simplify the result. (c) All steps of the simplification must be shown.

[3]

$$G : (\overline{A}, \overline{B}) (\overline{A} + \overline{B})$$

$$G : (A(B), (\overline{A} + \overline{B}))$$

(i) $\bar{A}.1 = 1$

[1]

(ii) $(B + \bar{A}).(\bar{B} + A) = \dots$

A + B

[2]

(b) A different logic system produced the Karnaugh map shown below.

BA DC	00	01	11	10
00	0	0	1 1	1,
01	11	1 !	0	0
11	1 1	_ 1 /	0	1
10	0	0	1 ⁻ 1	1

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.

[3]

C.B +

كى , [2

(c) Apply DeMorgan's theorem to the following expression **and** simplify the result. All steps of the simplification must be shown.

[3]

$$\overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{A} + \overrightarrow{F}$$

.

A + B + A . P

a P

	_		1	
(i)	A.1	=		. 2

[1]

(ii)
$$(B + \bar{A}).(\bar{B} + A) = ...$$

A +B

 \bigcirc

[2]

(b) A different logic system produced the Karnaugh map shown below.

DC BA	00	01	11	10
00	0	0	1 1	1,
01	11	1 !	0	0
11	1 1	_ 1 /	0	1
10	0	0	<u>-</u> 7	1

 \bigcirc

Give the simplest Boolean expression for the output ${\bf Q}$ of this logic system. Show any groups that you create on the map.

[3]

C.B + C.B

(c) Apply DeMorgan's theorem to the following expression **and** simplify the result.

All steps of the simplification must be shown.

[3]

$$Q = (\overline{A}.\overline{B})(A + \overline{B})$$

- (a) (i) What does the circle (o) on the reset connection indicate? [1]

 Means it is Logic O activated
 - (ii) **Complete** the circuit diagram by adding a logic gate and suitable connections so that the largest number displayed is 5. [3]
- (b) Describe, in detail, what happens to the display when:
 - (i) switch A is open; [1]

 the pulse generator generates random

 numbers

 (ii) switch A is pressed and held closed. [1]

 the pulse generator Stops and gives at

 a random number
- (c) Explain why a 15 kHz astable is suitable for this application. [1]

 Because it generates 15 thousand random

 numbers per second

8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0 x 10 ⁵
Input impedance	$2.0 \times 10^{12} \Omega$
Saturation voltage for a ± 13V supply	±12V
Slew rate	4.8 V μs ⁻¹
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13 \,\text{V}$ supply.

An amplifier has a **variable** voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60.

(a) Complete the circuit diagram for a voltage amplifier with this specification. [3]

Input ∘----

0V o-----

(b)	(i)	Calculate the two resistance values which give a maximum voltage gain of -6 ldentify the feedback resistance.	30. [2]
	(ii)	What is the input impedance of this voltage amplifier?	[1]
(c)		voltage gain is adjusted and the output voltage measured to be –9V when the inpage is 200 mV. Calculate the new voltage gain.	out [1]
(d)		voltage gain is changed to -30. Calculate the maximum bandwidth of the amplifithis voltage gain.	ier [2]

TURN OVER FOR THE REST OF THE QUESTION.

Examiner only

[3]

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. V_{OUT} is initially at 0 V_{\odot}

8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0 x 10 ⁵
Input impedance	2.0 x 10 ¹² Ω
Saturation voltage for a ± 13 V supply	±12V
Slew rate	4.8 V μs ⁻¹
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13 \,\mathrm{V}$ supply.

An amplifier has a **variable** voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60.

a) Complete the circuit diagram for a voltage amplifier with this specification. [3]

(b)	(i) Calculate the two resistance values which give a maximum voltage gain of –6 Identify the feedback resistance.	60. [2]
	R1 = 1	
	(ii) What is the input impedance of this voltage amplifier?	[1]
(c)	The voltage gain is adjusted and the output voltage measured to be –9V when the inposition voltage is 200 mV. Calculate the new voltage gain.	out [1]
(d)	The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amplif with this voltage gain. $ \text{O.Z + 2886630} = \text{Z.4.8} $	ier [2]

TURN OVER FOR THE REST OF THE QUESTION.

Examiner only

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $\mathbf{V}_{\mathbf{OUT}}$ is initially at 0 V.

[3]

END OF PAPER

8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0 x 10 ⁵
Input impedance	2.0 x 10 ¹² Ω
Saturation voltage for a ± 13 V supply	±12V
Slew rate	4.8 V μs ⁻¹
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13 \,\mathrm{V}$ supply.

An amplifier has a **variable** voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60.

(a) Complete the circuit diagram for a voltage amplifier with this specification. [3]

(b)	(i) Calculate the two resistance values which give a maximum voltage gain of Identify the feedback resistance.	-60. [2]
	Rf= 59 □	
	R1 = 1	·
	(ii) What is the input impedance of this voltage amplifier?	[1]
(c)	The voltage gain is adjusted and the output voltage measured to be –9V when the ivoltage is 200 mV. Calculate the new voltage gain.	nput [1]
(d)	The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amp with this voltage gain. $0.7 + 2488830 = 24.8$	olifier [2]

TURN OVER FOR THE REST OF THE QUESTION.

Examiner only

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $\mathbf{V}_{\mathbf{OUT}}$ is initially at 0 V.

[3]

END OF PAPER

[3]

8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0×10^5
Input impedance	$2.0 \times 10^{12} \Omega$
Saturation voltage for a ± 13 V supply	± 12 V
Slew rate	4.8 V μs ⁻¹
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a ± 13 V supply.

An amplifier has a variable voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60.

(a) Complete the circuit diagram for a voltage amplifier with this specification.

(b)	 (i) Calculate the two resistance values which give a maximum voltage gain of -60 ldentify the feedback resistance. [2]
· · · · · · · · · · · · · · · · · · ·	2 = 50 t - 60 / 1 = -60
	ll l M = lk
	(ii) What is the input impedance of this voltage amplifier? [1
\$	12 (2)
(c)	The voltage gain is adjusted and the output voltage measured to be –9V when the input voltage is 200 mV. Calculate the new voltage gain.
(d)	The voltage gain is changed to −30. Calculate the maximum bandwidth of the amplifie with this voltage gain.

TURN OVER FOR THE REST OF THE QUESTION.

Examiner only

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. V_{OUT} is initially at 0 V.

[3]

END OF PAPER

8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0×10^5
Input impedance	2.0 x 10 ¹² Ω
Saturation voltage for a ± 13 V supply	± 12 V
Slew rate	4.8 V μs ⁻¹
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13\,\mathrm{V}$ supply.

An amplifier has a **variable** voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is –60.

(a) Complete the circuit diagram for a voltage amplifier with this specification.

© WJEC CBAC Ltd.

(b)	(i) Calculate the two resistance values which give a maximum voltage gain of -60.	only
()	Identify the feedback resistance. [2]	2
•	2 = 5/e -60/1 = -60	
	Q 100 = \1/k	
	V	_
	(ii) What is the input impedance of this voltage amplifier? [1]	1
	14 (and)	
(-)	The college pair is adjusted and the subject walters processed to be 201/when the input	
(c)	The voltage gain is adjusted and the output voltage measured to be $-9V$ when the input voltage is 200 mV . Calculate the new voltage gain. [1]	
		/
	-9/200/ = - 0 5 V	
7.0	The college arise is absenced to 200 Colorlets the consistence bandwidth of the constitution	
(d)	The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amplifier with this voltage gain. [2]	
	3.6H / 30 = 120/42	'
	1/	

TURN OVER FOR THE REST OF THE QUESTION.

Examiner only

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $V_{OUT} \mbox{ is initially at 0 V}.$

[3]

END OF PAPER

8. A data sheet for an op-amp is given below.

Parameter	Value					
Open-loop gain	3.0 x 10 ⁵					
Input impedance	2.0 x 10 ¹² Ω					
Saturation voltage for a ± 13 V supply	±12V					
Slew rate	4.8 V μs ⁻¹					
Gain-bandwidth product	3.6 MHz					

The op-amp is powered from a ± 13 V supply.

An amplifier has a **variable** voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60.

(a) Complete the circuit diagram for a voltage amplifier with this specification. [3]

(b)	(i) Calculate the two resistance values which give a maximum voltage gain of -60. Identify the feedback resistance. [2]	Examiner only
	(ii) What is the input impedance of this voltage amplifier? Rf = $60 \text{ k-}\Omega$	ack
	Rin = 1RI2 7 (es)	Stince
	(ii) What is the input impedance of this voltage amplifier? Rf = 60 kJ2 [1]	
	14.0	
(c)	The voltage gain is adjusted and the output voltage measured to be –9 V when the input voltage is 200 mV. Calculate the new voltage gain.	
	200 mv = 0. 12 v 9v = 45 = -45	
	0. \ \)	
(d)	The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amplifier with this voltage gain. [2] $\beta w = 6\beta w P = 3.6 \times 10^6 = 120.000 \text{ Hz}$	
	30 = 120 KH2	

TURN OVER FOR THE REST OF THE QUESTION.

[3]

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $V_{OUT}^{}$ is initially at 0 V.

zturation

END OF PAPER

8. A data sheet for an op-amp is given below.

Parameter	Value					
Open-loop gain	3.0 x 10 ⁵					
Input impedance	2.0 x 10 ¹² Ω					
Saturation voltage for a ± 13 V supply	±12V					
Slew rate	4.8 V μs ⁻¹					
Gain-bandwidth product	3.6 MHz					

The op-amp is powered from a ± 13 V supply.

An amplifier has a **variable** voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60.

(a) Complete the circuit diagram for a voltage amplifier with this specification. [3]

(b)	· · · · · · · · · · · · · · · · · · ·							of -60. [2]	only		
		6 =	_ RF	: 6	0	,	J60	<u> </u>	-60		
			Rin		}		R;	Λ =	KΩ	feedb 11 (es 2 [1]	ack istonce
	(ii)	.What is the i	aput impedan	ce of this vo	oltage an	nplifie	r? Ri	= (20 KJ	∠' [1]	
		1+	Ω		٠.						
(c)		voltage gain is age is 200 mV.	•	•	_	meas	ured to	be -9'	√ when t	the input [1]	
	J	00 hv : 0	V 50	9v	۲ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	<u> 15</u>	: -	45			
				0. 0 7v							
										,	
(d)		voltage gain is this voltage ga	-	-30. Calcu	late the i	maxim	num ba	ndwidth	of the	amplifier [2]	
		Bw =	GBWP	Ξ	3.6	× 1	Oe	- 17	10.00	20 Hz	
								- 1	^ ^		

TURN OVER FOR THE REST OF THE QUESTION.

[3]

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $V_{OUT}^{}$ is initially at 0 V.

xturation

END OF PAPER