GCE Electronics ET1 1141-01

All Candidates' performance across questions

3. (a) Simplify the following expressions, showing your working where appropriate.
(i) $\overline{\mathrm{A}} .1=$
(ii) $\quad(\mathrm{B}+\overline{\mathrm{A}}) \cdot(\overline{\mathrm{B}}+\mathrm{A})=$ \qquad
(b) A different logic system produced the Karnaugh map shown below.

	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	1	1	0	1
10	0	0	1	1

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.
\qquad
\qquad
\qquad
(c) Apply DeMorgan's theorem to the following expression and simplify the result. All steps of the simplification must be shown.

$$
\mathrm{Q}=(\overline{\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}) \cdot(\mathrm{A}+\overline{\mathrm{B}}})
$$

3. (a) Simplify the following expressions, showing your working where appropriate.
(i) $\overline{\mathrm{A}} .1=$ \qquad A
(ii) $\quad(B+\bar{A}) \cdot(\bar{B}+A)=\bar{B}+\bar{A} \cdot \bar{B}+A=0$
\qquad
(b) A different logic system produced the Karnaugh map shown below.

Give the simplest Boolean expression for the output Q of this logic system.
Show any groups that you create on the map.

$$
C \cdot \bar{B}+\bar{C} \cdot B+D \cdot B \cdot \bar{A}
$$

\qquad
\qquad
(c) Apply DeMorgan's theorem to the following expression and simplify the result. All steps of the simplification must be shown.
\qquad
\qquad
\qquad
3. (a) Simplify the following expressions, showing your working where appropriate.
(i) $\overline{\mathrm{A}} .1=$ \qquad A
(ii) $(B+\bar{A}) \cdot(\bar{B}+A)=B+\bar{A} \cdot \bar{B}+A=0$
\qquad
(b) A different logic system produced the Karnaugh map shown below.

Give the simplest Boolean expression for the output Q of this logic system.
Show any groups that you create on the map.

$$
C \cdot \bar{B}+\bar{C} \cdot B+D \cdot B \cdot \bar{A}
$$

\qquad
\qquad
(c) Apply DeMorgan's theorem to the following expression and simplify the result. All steps of the simplification must be shown.
\qquad
\qquad
\qquad
3. (a) Simplify the following expressions, showing your working where appropriate.
(i) $\overline{\mathrm{A}} \cdot 1=$
A
(ii) $\quad(\mathrm{B}+\overline{\mathrm{A}}) \cdot(\overline{\mathrm{B}}+\mathrm{A})=$ \qquad $\bar{B} \cdot \bar{A}$
[1]
(b) A different logic system produced the Karnaugh map shown below.

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.
Q
$=$
C. \bar{B}
$B \cdot \bar{C}+$
D. TB
(c) Apply DeMorgan's theorem to the following expression and simplify the result. All steps of the simplification must be shown.

$$
\begin{aligned}
& Q=(\bar{A} \cdot \bar{B} \cdot \bar{A} \cdot \bar{A} \cdot(\bar{A}+\bar{B}) \\
& Q=(A \cdot \bar{B}) \cdot(\bar{A}+B) \\
& Q=\bar{A} \cdot B
\end{aligned}
$$

3. (a) Simplify the following expressions, showing your working where appropriate.
(i) $\overline{\mathrm{A}} \cdot 1=$
A
[1]
(ii) $\quad(\mathrm{B}+\overline{\mathrm{A}}) \cdot(\overline{\mathrm{B}}+\mathrm{A})=$

(b) A different logic system produced the Karnaugh map shown below.

Show any groups that you create on the map.
Q
$=$ C. $\bar{B}+$
B. $\bar{C}+$
$D \tau B$
(c) Apply DeMorgan's theorem to the following expression and simplify the result. All steps of the simplification must be shown.

$$
\begin{aligned}
& Q=(\overline{\bar{A}} \overline{\bar{B}} \cdot(\bar{A} \cdot \bar{B}) \\
& Q=(A \cdot \bar{A}) \\
& Q=\bar{A} \cdot \bar{B}) \cdot(\bar{A}+B)
\end{aligned}
$$

3. (a) Simplify the following expressions, showing your working where appropriate.
(i) $\overline{\mathrm{A}} .1=$ 1
(ii) $(\mathrm{B}+\overline{\mathrm{A}}) \cdot(\overline{\mathrm{B}}+\mathrm{A})=$
 $A+B$
(b) A different logic system produced the Karnaugh map shown below.

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.

$$
\bar{C} \cdot \bar{B}+\bar{C} \cdot B
$$

(c) Apply DeMorgan's theorem to the following expression and simplify the result. All steps of the simplification must be shown.
$\overline{\bar{A}} \overline{\bar{B}}+\overline{A+\bar{B}}^{Q=(\overline{\bar{A} \cdot \bar{B})}(\mathrm{A}+\overline{\mathrm{B}})}$
$\overline{\bar{A}}+\overline{\bar{B}}+\overline{A+\bar{B}}$
$A+B+\bar{A} \cdot B$
$A+B+\overline{A+B}=B$
$A+B+\bar{A} \cdot B$
3. (a) Simplify the following expressions, showing your working where appropriate.
(i) $\overline{\mathrm{A}} \cdot 1=$ \qquad D
(ii) $\quad(\mathrm{B}+\overline{\mathrm{A}}) \cdot(\overline{\mathrm{B}}+\mathrm{A})=$

$$
A+B
$$

(b) A different logic system produced the Karnaugh map shown below.

Give the simplest Boolean expression for the output Q of this logic system. Show any groups that you create on the map.

$$
\bar{C} \cdot \bar{B}+\bar{C} \cdot B
$$

(c) Apply DeMorgan's theorem to the following expression and simplify the result. All steps of the simplification must be shown.

$$
\overline{\bar{A} \zeta \bar{R}}+\overline{A+\bar{R}}^{Q=(\overline{\bar{A} \cdot \bar{B}})_{y}(A+\bar{B})}
$$

\qquad
$\bar{A}+\bar{B}+\bar{A}+\bar{B}$
$A+B$

$\bar{A} \cdot B$ $A+B+\overline{A+\bar{B}}$ $=B$

$$
A+B+\bar{A} \cdot B
$$

4. The incomplete circuit diagram shows a simple random number generator.

(a) (i) What does the circle (०) on the reset connection indicate?
\qquad
(ii) Complete the circuit diagram by adding a logic gate and suitable connections so that the largest number displayed is 5 .
(b) Describe, in detail, what happens to the display when:
(i) switch A is open;
\qquad
(ii) switch A is pressed and held closed.
\qquad
\qquad
(c) Explain why a 15 kHz astable is suitable for this application.
\qquad
\qquad
5. The incomplete circuit diagram shows a simple random number generator.

(a) (i) What does the circle (o) on the reset connection indicate?
Inverted
(ii) Complete the circuit diagram by adding a logic gate and suitable connections so that the largest number displayed is 5 .
(b) Describe, in detail, what happens to the display when:
(i) switch A is open;

(ii) switch A is pressed and held closed.

number
(c) Explain why a 15 kHz astable is suitable for this application.

6. The incomplete circuit diagram shows a simple random number generator.

(a) (i) What does the circle (0) on the reset connection indicate?

$$
\text { Inverted } \Omega
$$

(ii) Complete the circuit diagram by adding a logic gate and suitable connections so that the largest number displayed is 5 .
(b) Describe, in detail, what happens to the display when:
(i) switch A is open;

number
(c) Explain why a 15 kHz astable is suitable for this application.
will make it flash on long enough to be visible to the haman eye
4. The incomplete circuit diagram shows a simple random number generator.

(a) (i) What does the circle (o) on the reset connection indicate?
Means it is \log 'c - activated
(ii) Complete the circuit diagram by adding a logic gate and suitable connections so that the largest number displayed is 5 .
(b) Describe, in detail, what happens to the display when:
(i) switch A is open;
the
pulse
generator
generates
Random
numbers
(ii) switch A is pressed and held closed.
the
pulse
generator
Stops and
gives out
a random number
(c) Explain why a 15 kHz astable is suitable for this application.
Because it generates 15 thousand random
numbers per seccul
4. The incomplete circuit diagram shows a simple random number generator.

(a) (i) What does the circle (o) on the reset connection indicate?
Means it is Logic

- activated
(ii) Complete the circuit diagram by adding a logic gate and suitable connections so that the largest number displayed is 5 .
(b) Describe, in detail, what happens to the display when:
(i) switch A is open;
the
pulse
genera ares
generates
fandom
numbers
(ii) switch A is pressed and held closed.
the
pulse
generator

and gives at
a random number
(c) Explain why a 15 kHz astable is suitable for this application.

Because it generates
numbers per second
4. The incomplete circuit diagram shows a simple random number generator.

(a) (i) What does the circle (o) on the reset connection indicate?
\qquad
(ii) Complete the circuit diagram by adding a logic gate and suitable connections so that the largest number displayed is 5 .
(b) Describe, in detail, what happens to the display when:
(i) switch A is open;
\qquad
\qquad Providing a \qquad fixed \qquad with pulse
(ii). switch A is pressed and held closed.
\qquad
\qquad ab \qquad NOR \qquad gate wont \qquad function.
(c) Explain why a 15 kHz astable is suitable for this application.
\qquad
4. The incomplete circuit diagram shows a simple random number generator.

(ii) Complete the circuit diagram by adding a logic gate and suitable connections so that the largest number displayed is 5 .
(b) Describe, in detail, what happens to the display when:
(i) switch A is open;
\qquad
\qquad
Providing a \qquad fixed width pulse.
(ii). switch A is pressed and held closed.
\qquad
\qquad ab \qquad NOR \qquad gate wont \qquad function.
(c) Explain why a 15 kHz astable is suitable for this application.
\qquad
8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0×10^{5}
Input impedance	$2.0 \times 10^{12} \Omega$
Saturation voltage for a $\pm 13 \mathrm{~V}$ supply	$\pm 12 \mathrm{~V}$
Slew rate	$4.8 \mathrm{~V} \mathrm{\mu s}^{-1}$
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13 \mathrm{~V}$ supply.
An amplifier has a variable voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60 .
(a) Complete the circuit diagram for a voltage amplifier with this specification.
\qquad

(b) (i) Calculate the two resistance values which give a maximum voltage gain of -60. Identify the feedback resistance.
(ii) What is the input impedance of this voltage amplifier?
(c) The voltage gain is adjusted and the output voltage measured to be -9 V when the input voltage is 200 mV . Calculate the new voltage gain.
\qquad
(d) The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amplifier with this voltage gain.
(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $\mathbf{V}_{\text {OUT }}$ is initially at $\mathbf{0} \mathbf{V}$.

8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0×10^{5}
Input impedance	$2.0 \times 10^{12} \Omega$
Saturation voltage for a $\pm 13 \mathrm{~V}$ supply	$\pm 12 \mathrm{~V}$
Slew rate	$4.8 \mathrm{~V} \mu \mathrm{~s}^{-1}$
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13 \mathrm{~V}$ supply.
An amplifier has a variable voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60 .
(a) Complete the circuit diagram for a voltage amplifier with this specification.

(b) (i) Calculate the two resistance values which give a maximum voltage gain of -60 . Identify the feedback resistance.

$$
R E=59
$$

$$
R 1=1
$$

(ii) What is the input impedance of this voltage amplifier?

(c) The voltage gain is adjusted and the output voltage measured to be $-9 \vee$ when the input voltage is 200 mV . Calculate the new voltage gain.
(d) The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amplifier with this voltage gain.

$$
0.2+20=29.8
$$

TURN OVER FOR THE REST OF THE QUESTION.

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $\mathrm{V}_{\text {OUT }}$ is initially at 0 V .

END OF PAPER
8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0×10^{5}
Input impedance	$2.0 \times 10^{12} \Omega$
Saturation voltage for a $\pm 13 \mathrm{~V}$ supply	$\pm 12 \mathrm{~V}$
Slew rate	$4.8 \mathrm{~V} \mu \mathrm{~s}^{-1}$
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13 \mathrm{~V}$ supply.
An amplifier has a variable voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60 .
(a) Complete the circuit diagram for a voltage amplifier with this specification.

(b) (i) Calculate the two resistance values which give a maximum voltage gain of -60 . Identify the feedback resistance.
(ii) What is the input impedance of this voltage amplifier?

(c) The voltage gain is adjusted and the output voltage measured to be $-9 \vee$ when the input voltage is 200 mV . Calculate the new voltage gain.

(d) The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amplifier with this voltage gain.

$$
0.2+240=29.8
$$

TURN OVER FOR THE REST OF THE QUESTION.

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $\mathrm{V}_{\text {OUT }}$ is initially at 0 V .

END OF PAPER
8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0×10^{5}
Input impedance	$2.0 \times 10^{12} \Omega$
Saturation voltage for a $\pm 13 \mathrm{~V}$ supply	$\pm 12 \mathrm{~V}$
Slew rate	$4.8 \mathrm{~V} \mu \mathrm{~s}^{-1}$
Gain-bandwidth product	3.6 MHz

The op-amp is powered from $\mathrm{a} \pm 13 \mathrm{~V}$ supply.
An amplifier has a variable voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60 .
(a) Complete the circuit diagram for a voltage amplifier with this specification.

(b) (i) Calculate the two resistance values which give a maximum voltage gain of -60 . Identify the feedback resistance.

(ii) What is the input impedance of this voltage amplifier?
\qquad / \qquad $(2+x)$
(c) The voltage gain is adjusted and the output voltage measured to be -9 V when the input voltage is 200 mV . Calculate the new voltage gain.
(d) The voltage gain is changed to -30. Calculate the maximum bandwidth of the amplifier with this voltage gain.
\qquad

TURN OVER FOR THE REST OF THE QUESTION.

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $\mathbf{V}_{\text {OUT }}$ is initially at 0 V .
END OF PAPER
Examiner
8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0×10^{5}
Input impedance	$2.0 \times 10^{12} \Omega$
Saturation voltage for a $\pm 13 \mathrm{~V}$ supply	$\pm 12 \mathrm{~V}$
Slew rate	$4.8 \mathrm{~V} \mu \mathrm{~s}^{-1}$
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13 \mathrm{~V}$ supply.
An amplifier has a variable voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60 .
(a) Complete the circuit diagram for a voltage amplifier with this specification.

(ii) What is the input impedance of this voltage amplifier?

(c) The voltage gain is adjusted and the output voltage measured to be -9 V when the input voltage is 200 mV . Calculate the new voltage gain.

(d) The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amplifier with this voltage gain.

(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $\mathrm{V}_{\text {OUT }}$ is initially at 0 V .

8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0×10^{5}
Input impedance	$2.0 \times 10^{12} \Omega$
Saturation voltage for a $\pm 13 \mathrm{~V}$ supply	$\pm 12 \mathrm{~V}$
Slew rate	$4.8 \mathrm{~V} \mathrm{\mu s}{ }^{-1}$
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13 \mathrm{~V}$ supply.
An amplifier has a variable voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60 . inverviny
(a) Complete the circuit diagram for a voltage amplifier with this specification.

(b) (i) Calculate the two resistance values which give a maximum voltage gain of -60 . Identify the feedback resistance.

(c) The voltage gain is adjusted and the output voltage measured to be -9 V when the input voltage is 200 mV . Calculate the new voltage gain.

(d) The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amplifier with this voltage gain.

$$
\begin{aligned}
& B W=\frac{G B W P}{6}=\frac{3.6 \times 10^{6}}{30}=120.000 \mathrm{~Hz} \\
&=120 \mathrm{kHz}
\end{aligned}
$$

TURN OVER FOR THE REST OF THE QUESTION.
(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $\mathrm{V}_{\text {OUT }}$ is initially at 0 V .
slewrate $=\frac{\text { Vout }}{t}=\frac{\text { vout }}{7}$

END OF PAPER
8. A data sheet for an op-amp is given below.

Parameter	Value
Open-loop gain	3.0×10^{5}
Input impedance	$2.0 \times 10^{12} \Omega$
Saturation voltage for a $\pm 13 \mathrm{~V}$ supply	$\pm 12 \mathrm{~V}$
Slew rate	$4.8 \mathrm{~V} \mathrm{\mu s}{ }^{-1}$
Gain-bandwidth product	3.6 MHz

The op-amp is powered from a $\pm 13 \mathrm{~V}$ supply.
An amplifier has a variable voltage gain. The minimum voltage gain is 0 and the maximum voltage gain is -60 . inverviny
(a) Complete the circuit diagram for a voltage amplifier with this specification.

(b) (i) Calculate the two resistance values which give a maximum voltage gain of -60 . Identify the feedback resistance.

(c) The voltage gain is adjusted and the output voltage measured to be $-9 \vee$ when the input voltage is 200 mV . Calculate the new voltage gain.

(d) The voltage gain is changed to -30 . Calculate the maximum bandwidth of the amplifier with this voltage gain.

$$
\begin{aligned}
& B W=\frac{G B W P}{6}=\frac{3.6 \times 10^{6}}{30}=120.000 \mathrm{~Hz} \\
&=120 \mathrm{kHz}
\end{aligned}
$$

TURN OVER FOR THE REST OF THE QUESTION.
(e) The following signal is applied to the input to illustrate the effect of slew-rate on the output of the voltage amplifier.

Draw the output voltage on the axes below. $\mathrm{V}_{\text {OUT }}$ is initially at 0 V .
Siewrate $=\frac{\text { Vout }}{t}=\frac{\text { vout }}{\text { bit }}$

END OF PAPER

